- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Feldl, Nicole (2)
-
Hay, Stephanie (2)
-
Audette, Alexandre (1)
-
Blackport, Russell (1)
-
Deser, Clara (1)
-
England, Mark (1)
-
Gervais, Melissa (1)
-
Kushner, Paul J (1)
-
Kushner, Paul J. (1)
-
Liang, Yu-Chiao (1)
-
Msadek, Rym (1)
-
Mudhar, Regan (1)
-
Po-Chedley, Stephen (1)
-
Screen, James A (1)
-
Sigmond, Michael (1)
-
Singh, Hansi K. A. (1)
-
Smith, Doug (1)
-
Sun, Lantao (1)
-
Yu, Hao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Human-induced warming is amplified in the Arctic, but its causes and consequences are not precisely known. Here, we review scientific advances facilitated by the Polar Amplification Model Intercomparison Project. Surface heat flux changes and feedbacks triggered by sea-ice loss are critical to explain the magnitude and seasonality of Arctic amplification. Tropospheric responses to Arctic sea-ice loss that are robust across models and separable from internal variability have been revealed, including local warming and moistening, equatorward shifts of the jet stream and storm track in the North Atlantic, and fewer and milder cold extremes over North America. Whilst generally small compared to simulated internal variability, the response to Arctic sea-ice loss comprises a non-negligible contribution to projected climate change. For example, Arctic sea-ice loss is essential to explain projected North Atlantic jet trends and their uncertainty. Model diversity in the simulated responses has provided pathways to observationally constrain the real-world response.more » « lessFree, publicly-accessible full text available December 6, 2026
-
Feldl, Nicole; Po-Chedley, Stephen; Singh, Hansi K. A.; Hay, Stephanie; Kushner, Paul J. (, npj Climate and Atmospheric Science)Abstract Arctic amplification of anthropogenic climate change is widely attributed to the sea-ice albedo feedback, with its attendant increase in absorbed solar radiation, and to the effect of the vertical structure of atmospheric warming on Earth’s outgoing longwave radiation. The latter lapse rate feedback is subject, at high latitudes, to a myriad of local and remote influences whose relative contributions remain unquantified. The distinct controls on the high-latitude lapse rate feedback are here partitioned into “upper” and “lower” contributions originating above and below a characteristic climatological isentropic surface that separates the high-latitude lower troposphere from the rest of the atmosphere. This decomposition clarifies how the positive high-latitude lapse rate feedback over polar oceans arises primarily as an atmospheric response to local sea ice loss and is reduced in subpolar latitudes by an increase in poleward atmospheric energy transport. The separation of the locally driven component of the high-latitude lapse rate feedback further reveals how it and the sea-ice albedo feedback together dominate Arctic amplification as a coupled mechanism operating across the seasonal cycle.more » « less
An official website of the United States government
